A variational model for fracture and debonding of thin films under in-plane loadings
We study fracture and debonding of a thin stiff film bonded to a rigid substrate through a thin compliant layer, introducing a two-dimensional variational fracture model in brittle elasticity. Fractures are naturally distinguished between transverse cracks in the film (curves in 2D) and debonded sur...
Autores principales: | , , , , |
---|---|
Formato: | Artículo (Article) |
Idioma: | Inglés (English) |
Publicado: |
2025
|
Materias: | |
Acceso en línea: | https://repositorio.uc.cl/handle/11534/101665 |
_version_ | 1825249152461701120 |
---|---|
author | Baldelli, A. A. Leon Babadjian, J. -F. Bourdin, B. Henao, D. Maurini, C. |
author_facet | Baldelli, A. A. Leon Babadjian, J. -F. Bourdin, B. Henao, D. Maurini, C. |
author_sort | Baldelli, A. A. Leon |
collection | Repositorio |
coutry_str | Chile |
description | We study fracture and debonding of a thin stiff film bonded to a rigid substrate through a thin compliant layer, introducing a two-dimensional variational fracture model in brittle elasticity. Fractures are naturally distinguished between transverse cracks in the film (curves in 2D) and debonded surfaces (2D planar regions). In order to study the mechanical response of such systems under increasing loads, we formulate a dimension-reduced, rate-independent, irreversible evolution law accounting for both transverse fracture and debonding. We propose a numerical implementation based on a regularized formulation of the fracture problem via a gradient damage functional, and provide an illustration of its capabilities exploring complex crack patterns, showing a qualitative comparison with geometrically involved real life examples. Moreover, we justify the underlying dimension-reduced model in the setting of scalar-valued displacement fields by a rigorous asymptotic analysis using T-convergence, starting from the three-dimensional variational fracture (free-discontinuity) problem under precise scaling hypotheses on material and geometric parameters. (C) 2014 Elsevier Ltd. All rights reserved. |
first_indexed | 2025-02-27T21:53:57Z |
format | Artículo (Article) |
id | ir-11534-101665 |
institution | Universidad Católica de Chile |
language | Inglés (English) |
last_indexed | 2025-02-27T21:53:57Z |
publishDate | 2025 |
record_format | dspace |
spelling | ir-11534-1016652025-01-24T14:16:35Z A variational model for fracture and debonding of thin films under in-plane loadings Baldelli, A. A. Leon Babadjian, J. -F. Bourdin, B. Henao, D. Maurini, C. Thin films Fracture mechanics Asymptotic analysis Variational mechanics Dimension reduction We study fracture and debonding of a thin stiff film bonded to a rigid substrate through a thin compliant layer, introducing a two-dimensional variational fracture model in brittle elasticity. Fractures are naturally distinguished between transverse cracks in the film (curves in 2D) and debonded surfaces (2D planar regions). In order to study the mechanical response of such systems under increasing loads, we formulate a dimension-reduced, rate-independent, irreversible evolution law accounting for both transverse fracture and debonding. We propose a numerical implementation based on a regularized formulation of the fracture problem via a gradient damage functional, and provide an illustration of its capabilities exploring complex crack patterns, showing a qualitative comparison with geometrically involved real life examples. Moreover, we justify the underlying dimension-reduced model in the setting of scalar-valued displacement fields by a rigorous asymptotic analysis using T-convergence, starting from the three-dimensional variational fracture (free-discontinuity) problem under precise scaling hypotheses on material and geometric parameters. (C) 2014 Elsevier Ltd. All rights reserved. 2025-01-23T21:42:50Z 2025-01-23T21:42:50Z 2014 artículo 10.1016/j.jmps.2014.05.020 1873-4782 0022-5096 https://doi.org/10.1016/j.jmps.2014.05.020 https://repositorio.uc.cl/handle/11534/101665 WOS:000341466200019 en acceso restringido |
spellingShingle | Thin films Fracture mechanics Asymptotic analysis Variational mechanics Dimension reduction Baldelli, A. A. Leon Babadjian, J. -F. Bourdin, B. Henao, D. Maurini, C. A variational model for fracture and debonding of thin films under in-plane loadings |
title | A variational model for fracture and debonding of thin films under in-plane loadings |
title_full | A variational model for fracture and debonding of thin films under in-plane loadings |
title_fullStr | A variational model for fracture and debonding of thin films under in-plane loadings |
title_full_unstemmed | A variational model for fracture and debonding of thin films under in-plane loadings |
title_short | A variational model for fracture and debonding of thin films under in-plane loadings |
title_sort | variational model for fracture and debonding of thin films under in-plane loadings |
topic | Thin films Fracture mechanics Asymptotic analysis Variational mechanics Dimension reduction |
url | https://repositorio.uc.cl/handle/11534/101665 |
work_keys_str_mv | AT baldelliaaleon avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT babadjianjf avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT bourdinb avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT henaod avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT maurinic avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT baldelliaaleon variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT babadjianjf variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT bourdinb variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT henaod variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings AT maurinic variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings |