A variational model for fracture and debonding of thin films under in-plane loadings

We study fracture and debonding of a thin stiff film bonded to a rigid substrate through a thin compliant layer, introducing a two-dimensional variational fracture model in brittle elasticity. Fractures are naturally distinguished between transverse cracks in the film (curves in 2D) and debonded sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Baldelli, A. A. Leon, Babadjian, J. -F., Bourdin, B., Henao, D., Maurini, C.
Formato: Artículo (Article)
Idioma:Inglés (English)
Publicado: 2025
Materias:
Acceso en línea:https://repositorio.uc.cl/handle/11534/101665
_version_ 1825249152461701120
author Baldelli, A. A. Leon
Babadjian, J. -F.
Bourdin, B.
Henao, D.
Maurini, C.
author_facet Baldelli, A. A. Leon
Babadjian, J. -F.
Bourdin, B.
Henao, D.
Maurini, C.
author_sort Baldelli, A. A. Leon
collection Repositorio
coutry_str Chile
description We study fracture and debonding of a thin stiff film bonded to a rigid substrate through a thin compliant layer, introducing a two-dimensional variational fracture model in brittle elasticity. Fractures are naturally distinguished between transverse cracks in the film (curves in 2D) and debonded surfaces (2D planar regions). In order to study the mechanical response of such systems under increasing loads, we formulate a dimension-reduced, rate-independent, irreversible evolution law accounting for both transverse fracture and debonding. We propose a numerical implementation based on a regularized formulation of the fracture problem via a gradient damage functional, and provide an illustration of its capabilities exploring complex crack patterns, showing a qualitative comparison with geometrically involved real life examples. Moreover, we justify the underlying dimension-reduced model in the setting of scalar-valued displacement fields by a rigorous asymptotic analysis using T-convergence, starting from the three-dimensional variational fracture (free-discontinuity) problem under precise scaling hypotheses on material and geometric parameters. (C) 2014 Elsevier Ltd. All rights reserved.
first_indexed 2025-02-27T21:53:57Z
format Artículo (Article)
id ir-11534-101665
institution Universidad Católica de Chile
language Inglés (English)
last_indexed 2025-02-27T21:53:57Z
publishDate 2025
record_format dspace
spelling ir-11534-1016652025-01-24T14:16:35Z A variational model for fracture and debonding of thin films under in-plane loadings Baldelli, A. A. Leon Babadjian, J. -F. Bourdin, B. Henao, D. Maurini, C. Thin films Fracture mechanics Asymptotic analysis Variational mechanics Dimension reduction We study fracture and debonding of a thin stiff film bonded to a rigid substrate through a thin compliant layer, introducing a two-dimensional variational fracture model in brittle elasticity. Fractures are naturally distinguished between transverse cracks in the film (curves in 2D) and debonded surfaces (2D planar regions). In order to study the mechanical response of such systems under increasing loads, we formulate a dimension-reduced, rate-independent, irreversible evolution law accounting for both transverse fracture and debonding. We propose a numerical implementation based on a regularized formulation of the fracture problem via a gradient damage functional, and provide an illustration of its capabilities exploring complex crack patterns, showing a qualitative comparison with geometrically involved real life examples. Moreover, we justify the underlying dimension-reduced model in the setting of scalar-valued displacement fields by a rigorous asymptotic analysis using T-convergence, starting from the three-dimensional variational fracture (free-discontinuity) problem under precise scaling hypotheses on material and geometric parameters. (C) 2014 Elsevier Ltd. All rights reserved. 2025-01-23T21:42:50Z 2025-01-23T21:42:50Z 2014 artículo 10.1016/j.jmps.2014.05.020 1873-4782 0022-5096 https://doi.org/10.1016/j.jmps.2014.05.020 https://repositorio.uc.cl/handle/11534/101665 WOS:000341466200019 en acceso restringido
spellingShingle Thin films
Fracture mechanics
Asymptotic analysis
Variational mechanics
Dimension reduction
Baldelli, A. A. Leon
Babadjian, J. -F.
Bourdin, B.
Henao, D.
Maurini, C.
A variational model for fracture and debonding of thin films under in-plane loadings
title A variational model for fracture and debonding of thin films under in-plane loadings
title_full A variational model for fracture and debonding of thin films under in-plane loadings
title_fullStr A variational model for fracture and debonding of thin films under in-plane loadings
title_full_unstemmed A variational model for fracture and debonding of thin films under in-plane loadings
title_short A variational model for fracture and debonding of thin films under in-plane loadings
title_sort variational model for fracture and debonding of thin films under in-plane loadings
topic Thin films
Fracture mechanics
Asymptotic analysis
Variational mechanics
Dimension reduction
url https://repositorio.uc.cl/handle/11534/101665
work_keys_str_mv AT baldelliaaleon avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT babadjianjf avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT bourdinb avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT henaod avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT maurinic avariationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT baldelliaaleon variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT babadjianjf variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT bourdinb variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT henaod variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings
AT maurinic variationalmodelforfractureanddebondingofthinfilmsunderinplaneloadings